2004 Vol. 6, No. 5 783-786

Highly Enantioenriched Homoenolate Reagents by Asymmetric γ-Deprotonation of Achiral 1-Silyl-Substituted 1-Alkenyl Carbamates

Jenny Reuber, Roland Fröhlich, and Dieter Hoppe*

Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany

dhoppe@uni-muenster.de

Received December 19, 2003

ABSTRACT

1-Trimethylsilyl-1-alkenyl carbamates 1 are deprotonated by n-butyllithium/(-)-sparteine (2) with a high degree of enantiotopic differentiation in the γ -position to form the enantiomerically enriched allyllithium derivatives 3. Trapping these with several electrophiles proceeds stereospecifically in an anti-S_E' or syn-S_E' substitution to form products 4 or ent-4, respectively. Compounds 3a (R = Me) and 3b (R = Ph) exhibit toward carbonyl electrophiles opposite senses of almost complete stereospecificity, thus for 3b·2 the involvement of a η ³-complex is suggested.

Enantioenriched homoenolate reagents are valuable synthetic building blocks.¹ In particular, 1-oxygen-² and 1-nitrogen-substituted³ 1-metalallyl derivatives proved to be ideal reagents for enantio- and diastereoselective homoaldol reactions. Quite recently, we found a surprisingly simple approach to configurationally stable, enantioenriched homoeno-

late reagents by (—)-sparteine-mediated γ -deprotonation of 1-aryl-1-alkenyl carbamates **1** (aryl for Me₃Si).⁴ Here, the 3-pro-R-proton, which is localized in a position remote from the complexing group, is removed with high selectivity by the chiral base. Taking into account that an anion-stabilizing group in position 1 may be required, we now investigated the 1-trimethylsilyl-1-butenyl carbamate **1a** (Scheme 1).⁵ For efficient deprotonation in toluene, 3 equiv of *n*-butyllithium/(—)-sparteine (**2**) and a reaction time of 12 h at —78 °C were required. Under these conditions, the lithium compound **3a** proved to be perfectly configurationally stable, and trapping it provided the γ -substitution products **4a**—**c** in high yield and with \geq 95% ee. Acylations of **3a** to

^{*} Fax: (+49)251/8336531.

† To whom correspondence regarding X-ray analysis should be addressed.

⁽¹⁾ Reviews: (a) Hoppe, D.; Hense, T. Angew. Chem. 1997, 109, 2376; Angew. Chem., Int. Ed. Engl. 1997, 36, 2282. (b) Hoppe, D.; Marr, F.; Brüggemann, M. In Organolithium in Enantioselective Synthesis; Hodgson, D. M., Ed.; Topics in Organometallic Chemistry; Springer-Verlag: Berlin, 2003; Vol. 5, p 61. (c) Beak, P.; Johnson, T. A.; Kim, D. D.; Lim, S. H. In Organolithium in Enantioselective Synthesis; Hodgson, D. M., Ed.; Topics in Organometallic Chemistry; Springer-Verlag: Berlin, 2003; Vol. 5, p 134. (d) Ahlbrecht, H.; Beyer, U. Synthesis 1999, 365.

^{(2) (}a) Hoppe, D.; Zschage, O. Angew. Chem. 1989, 101, 67; Angew. Chem., Int. Ed. Engl. 1989, 28, 69. (b) Zschage, O.; Hoppe, D. Tetrahedron 1992, 48, 5657. (c) Hoppe, D.; Krämer, T. Angew. Chem. 1986, 98, 171; Angew. Chem., Int. Ed. Engl. 1986, 25, 160.

⁽³⁾ Beak, P.; Weisenburger, G. A. J. Am. Chem. Soc. 1996, 118, 12218.

⁽⁴⁾ Hoppe, D.; Seppi, M.; Kalkofen, R.; Reupohl, J.; Fröhlich, R. Angew. Chem. 2004, 116, in press.

^{(5) (}E)-1-Trimethylsilyl-1-butenyl N,N-diisopropylcarbamate was produced from the 2-buten-1-ol in a three-step sequence (see Supporting Information).

Scheme 1. Lithiation of **1a** and Reaction with Electrophiles^a

^a Reagents and conditions: (a) 3.0 equiv of nBuLi/(−)-sparteine, toluene, −78 °C, 12 h; (b) (i) 6.0 equiv of EIX, −78 °C, 2 h, (ii) MeOH, HOAc, (iii) rt.

form alkenyl ester **4d** and ketone **4e** were less efficient (Scheme 1). We assume that enolate formation by excess of base is the origin of partial racemization and decomposition. As will be shown below, 6 products **4a**—**e** have (S)-configuration, resulting from *anti*- S_E ′ attack of the electrophile onto (R)-**3a·2**.

The exchange of lithium for tris(diethylamino)titanium^{7–9} in (R)- $3a\cdot 2$ generally proceeds with inversion of configuration to form the intermediate (R)-5a, which adds to aldehydes via a Zimmerman-Traxler transition state¹⁰ in a strict *syn*- S_E ′ fashion, leading with complete 1,3-transfer of chirality to essentially enantiopure homoaldol products *anti*-6 (Scheme 2 and Table 1). Direct addition of the aldehydes to the

Table 1. Prepared Homoaldol Products 6

RCH=O	product	yield	% ee ^a	$\mathrm{d}\mathrm{r}^b$	$[\alpha]_{D}^{c}$
CH ₃ (CH ₂) ₂ CH=O	anti- 6a	70	≥95	≥95:5	-25
(CH ₃) ₂ CHCH=O	anti- 6b	72	≥ 95	\geq 95:5	-27
$(CH_3)_3CCH=O$	anti- 6c	80	≥ 95	\geq 95:5	-29
$cC_6H_{11}CH=O$	anti- 6d	69	≥ 95	\geq 95:5	-15
$(C_6H_5)CH=O$	anti- 6e	71	89	\geq 95:5	-78

 $[^]a$ Determined by $^1{\rm H}$ NMR shift experiments. b Determined by $^1{\rm H}$ NMR and GC. c c = 0.8–2.8, CHCl₃.

lithiated compound (R)-3a·2 furnishes mixtures of *anti*- and *syn*-6 (approximately 1:1) (Scheme 2).

Samples of the homoallylic alcohols **6d** and **6e** were oxidized to ketones (+)-**7d** ($[\alpha]_D = +169$ and +168) and (+)-**7e** ($[\alpha]_D = +158$ and +160), respectively, giving evidence for the identical absolute configuration at C-3 in

Scheme 2. Transmetalation and Homoaldol Reaction^a

^a Reagents and conditions: 3.5 equiv of CITi(NEt₂)₃, toluene, -78 °C, 6 h; (b) (i) 7.0 equiv of EIX, -25 °C, 2 h, (ii) MeOH, HOAc, -78 °C, (iii) rt; (c) (i) 7.0 equiv of EIX, -78 °C, 2 h, (ii) MeOH, HOAc, -89 °C, (iii) rt; (d) 1.5 equiv of PDC, CH₂Cl₂, rt.

the addition products arising from both pathways. Desily-lation of (-)-*anti*-**6b** led to the known homoaldol product **8b**,² which has the configuration (3*S*,4*R*) (Scheme 3). It has to be assumed that, unlike with the titanium intermediate **5a**, the lithium compound (R)-**3a·2** undergoes addition in an open-chain *anti*-S_E' process.

Scheme 3. Desilylation of (-)-anti-
$$\mathbf{6b}^a$$

OH OH OH OH \mathbf{CH}_3 OCb \mathbf{CH}_3 OCb

^a Reagents and conditions: (a) 1.5 equiv of TBAF, THF, 22 h.

In conclusion, the lithium compound (*R*)-3a·2 has a very pronounced tendency for *anti*-S_E' processes with most electrophiles exceeding those of the recently investigated 1-aryl derivative.⁴

When we investigated the analogous (E)-3-phenyl-1-trimethylsilyl-1-propenyl carbamate $1b^{11}$ we encountered some surprises (Scheme 4).

784 Org. Lett., Vol. 6, No. 5, 2004

⁽⁶⁾ Lithiodestannylation of (S)-(+)-**4b** ($[\alpha]_D = +112$) with $nBuLi/Et_2O$ at -78 °C and reaction of the formed (S)-**3a**·Et₂O with Ph₃SnCl afforded (R)-(-)-**4c** ($[\alpha]_D = -66$, 48% ee) with 87% yield. Since all known lithiodestannylations proceed as suprafacial processes, the stereochemical course of the reverse reaction is (one time more) anti-S_E'.

⁽⁷⁾ Reviews: (a) Reetz, M. T. Organotitanium Reagents in Organic Synthesis, 1st ed.; Springer-Verlag: Berlin, 1986. (b) Weidmann, B.; Seebach, D. Angew. Chem. 1983, 95, 12; Angew. Chem., Int. Ed. Engl. 1983, 22, 32. (c) Reetz, M. T. Organotitanium Chemistry. In Organometallics in Synthesis, 2nd ed.; Schlosser, M., Ed.; Wiley: Chichester, 2002; p 817.

⁽⁸⁾ Hoppe, D.; Hanko, R. Angew. Chem. 1982, 94, 378; Angew. Chem., Int. Ed. Engl. 1982, 21, 372.

⁽⁹⁾ When we used ClTi(O*i*Pr)₃ as exchange reagent, diminished yields (*anti*-**6b** 41%; *anti*-**6e** 42%) were obtained. This is due to the formation of radicals, since we isolated an oxidative dimer of **3a** ((1*E*,5*E*)-[3,4-dimethyl-1,6-bis(trimethylsilyl)-1,5-hexadien-1,6-diyl] bis[*N*,*N*-diisopropylcarbamatel).

⁽¹⁰⁾ Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920.

Scheme 4. Lithiation of **1b** and Reaction with Electrophiles

^a Reagents and conditions: (a) 1.2 equiv of nBuLi/(-)-sparteine, toluene, -78 °C, 1 h; (b) (i) 3.0 equiv of EIX, -78 °C, 2 h, (ii) MeOH, HOAc, -78 °C, (iii) rt.

As expected, as a result of the attached phenyl residue, the deprotonation proceeded very smoothly. On trapping the reaction mixture with silyl and tin chlorides, almost enantiopure products $\mathbf{9a}$, $\mathbf{9b}$, or $\mathbf{9c}$ were produced. From $\mathbf{9a}$ and $\mathbf{9c}^{12}$ X-ray analysis with anomalous diffraction were obtained (Figures 1 and 2) to reveal the (3R)-configuration arising

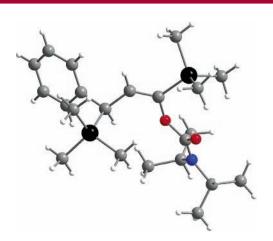


Figure 1. X-ray structure of 9a.

from a clean anti- S_E '-attack. On the other hand, from carbonyl electrophiles, without exception, the enantiomers ent-9d-g were formed. The absolute configuration of ent- $9e^{12}$ (Figure 3) could be explored by X-ray analysis; the other ones were subjected to chemical correlations.

After lithium—titanium exchange in (*R*)-3b·2, acetone furnished the enantiomer 9f ($[\alpha]_D = -123, 93\%, \ge 95\%$). Addition of aldehydes to the intermediate titanium compound 10 provides the highly enantioenriched diastereomerically

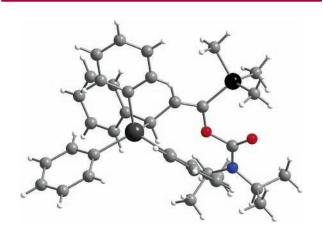
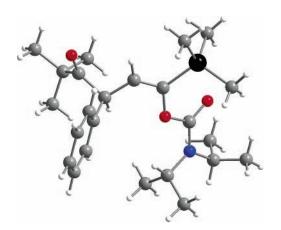



Figure 2. X-ray structure of 9c.

Figure 3. X-ray structure of *ent-9e*.

pure homoaldol products *anti*-11 (Scheme 5, Table 2). A second diastereomer could not be detected by ^{1}H NMR and GC in the crude mixture, and thus the dr is concluded to be \geq 95:5.

^a Reagents and conditions: (a) 1.2 equiv of nBuLi/(-)-sparteine, toluene, −78 °C, 1 h; (b) 1.5 equiv of $CITi(NEt_2)_3$, −78 °C, 30 min; (c) (i) 3.0 equiv of RCH=O, −78 °C, 2 h, (ii) MeOH, HOAc, −78 °C, (iii) rt.

It is evident from these results that the lithium-(-)-sparteine compound (R)-3b·2 has a high tendency for *syn*-

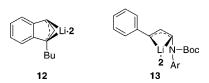
Org. Lett., Vol. 6, No. 5, 2004

⁽¹¹⁾ E)-3-Phenyl-1-trimethylsilyl-1-propenyl N,N-diisopropylcarbamate was produced from cinnamyl alcohol in a three-step sequence (see Supporting Information).

Table 2. Prepared Homoaldol Products anti-11

RCH=O	product	yield	% ee	$[\alpha]_{\mathrm{D}}^{c}$
CH ₃ (CH ₂) ₂ CH=O	anti-11a	98	91 ^a	-144
(CH ₃) ₂ CHCH=O	anti- 11b	95	94^a	-162
$(CH_3)_3CCH=O$	anti-11c	98	95^a	-181
$cC_6H_{11}CH=O$	<i>anti</i> - 11d	93	97^a	-113
$4-Br(C_6H_4)CH=O$	anti- 11e	99	\geq 95 b	-64

^a Determined by chiral HPLC. ^b Determined by ¹H NMR shift experiments. ^c c = 0.78-1.8, CHCl₃.


addition reactions toward carbonyl compounds, opposite to compound (R)-3a·2. What are the reasons? Compound (R)-3b·2 differs from (R)-3a·2 in the exchange of methyl for

(12) X-ray crystal structure analysis of 9a: formula C₂₂H₃₉NO₂Si₂, MW = 405.72, colorless crystal 0.40 × 0.25 × 0.20 mm³, a = 21.838(1), b = 9.844(2), c = 12.235(1) Å, V = 2630.2(6) ų, $\rho_{\rm calc}$ = 1.025 g cm⁻³, $\mu = 13.27 \text{ cm}^{-1}$, empirical absorption correction via ψ scan data (0.619 \leq $T \le 0.777$, Z = 4, orthorhombic, space group Pna2₁ (No. 33), $\lambda = 1.54178$ Å, T = 223 K, $\omega/2\theta$ scans, 2810 reflections collected (-h, -k, -l), [(sin θ)/ λ] = 0.62 Å⁻¹, 2810 independent and 2370 observed reflections [$I \ge 2\sigma$ -(I)], 254 refined parameters, R = 0.052, $wR^2 = 0.140$, Flack parameter 0.01(5), max residual electron density 0.27 (-0.27) e Å⁻³, hydrogens calculated and refined as riding atoms. X-ray crystal structure analysis of 9c: formula $C_{37}H_{45}NO_2SiSn$, MW = 682.52, colorless crystal 0.30×0.20 \times 0.15 mm³, a = 9.245(1), b = 11.945(1), c = 32.509(1) Å, V = 3590.0(5) Å³, $\rho_{\text{calc}} = 1.263 \text{ g cm}^{-3}$, $\mu = 7.75 \text{ cm}^{-1}$, empirical absorption correction (0.801 $\leq T \leq$ 0.893), Z = 4, orthorhombic, space group $P2_12_12_1$ (No. 19), $\lambda = 0.71073$ Å, T = 198 K, ω and φ scans, 11789 reflections collected $(\pm h, \pm k, \pm l)$, $[(\sin \theta)/\lambda] = 0.67 \text{ Å}^{-1}$, 7633 independent ($R_{\text{int}} = 0.031$) and 5703 observed reflections [$I \geq 2\sigma(I)$], 386 refined parameters, R = 0.040, $wR^2 = 0.061$, Flack parameter -0.05(2), max. residual electron density 0.48 (-0.46) e Å⁻³, hydrogens calculated and refined as riding atoms. X-ray crystal structure analysis of *ent*-**9e**: formula $C_{24}H_{39}NO_3Si$, MW = 417.65, colourless crystal $0.35 \times 0.20 \times 0.20 \text{ mm}^3$, a = 9.895(1), b = 11.670(1), c = 22.943(1) Å, $V = 2649.3(4) \text{ Å}^3$, $\rho_{\text{calc}} = 1.047 \text{ g cm}^{-3}$, $\mu = 1.10 \text{ cm}^{-1}$, empirical absorption correction $(0.963 \le T \le 0.978)$, Z = 4, orthorhombic, space group $P2_12_1$ (No. 19), $\lambda = 0.71073$ Å, T = 198 K, ω and φ scans, 20230 reflections collected $(\pm h, \pm k, \pm l)$, $[(\sin \theta)/\lambda] = 0.66$ Å⁻¹, 6233 independent ($R_{\text{int}} = 0.067$) and 4461 observed reflections [$I \ge 2\sigma(I)$], 274 refined parameters, R = 0.047, $wR^2 = 0.105$, Flack parameter -0.08(12), max. residual electron density 0.22~(-0.18) e Å⁻³, hydrogens calculated and refined as riding atoms. Data sets were collected with Enraf-Nonius CAD4 and Nonius KappaCCD diffractometers, the later equipped with a rotating anode generator Nonius FR591. Programs used: data collection EXPRESS (Nonius B.V., 1994) and COLLECT (Nonius B. V., 1998), data reduction MolEN (Fair, K. Enraf-Nonius B.V., 1990) and Denzo-SMN (Otwinowski, Z.; Minor, W. Methods in Enzymology, 1997, 276, 307-326), absorption correction for CCD data SORTAV (Blessing, R. H. Acta Crystallogr. 1995, A51, 33–37; J. Appl. Crystallogr. 1997, 30, 421–426), structure solution SHELXS-97 (Sheldrick, G. M. *Acta Crystallogr.* **1990**, *A46*, 467–473), structure refinement SHELXL-97 (Sheldrick, G. M. Universität Göttingen, 1997), graphics Diamond (Brandenburg, K. Universität Bonn, 1997).

(13) Hoppe, D.; Hoppe, I.; Marsch, M.; Harms, K.; Boche, G. *Angew. Chem.* **1995**, *107*, 2328; *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 2158.

(14) Beak, P.; Pippel, D. J.; Weisenburger, G. A.; Wilson, S. R. Angew. Chem. 1998, 110, 2600; Angew. Chem., Int. Ed. Engl. 1998, 37, 2522.

phenyl at C-3, which causes a stabilization of the negative charge in the anion in position 3. Therefore, we assume that (R)-3b·2 has a η^3 -structure (see Scheme 4) either in the ground state or its involvement in a rapid equilibration. It has been demonstrated for the related lithium-(-)-sparteine complexes 12^{13} and $13^{14,15}$ (Figure 4) that these have a η^3 -

Figure 4. Structures of complexes **12** ¹³ and **13**, ^{14,15} elucidated by X-ray analysis.

structure (at least in solid state) and that they react with aldehydes, ketones, and acid chlorides in a strict suprafacial manner. Obviously, the lithium cation here has a higher Lewis acidity toward carbonyl groups than in the appropriate η^1 -complexes and, thus, "lures" the carbonyl compound to enter from the same face of the allylic system.

After desilylation (H for Me₃Si in 9, *ent-*9 or *anti-*11), highly enantioenriched products that derive from the homoenolate of 3-phenyl-2-propenal are accessible;¹⁵ the direct carbamate-type homoenolate reagent had turned out not to be configurationally stable.¹⁶ Furthermore, in many cases, both enantiomers can be selectively approached via the same intermediate 3b·2 or by utilization of a surrogate, recently introduced by O'Brien and co-workers.¹⁷

Acknowledgment. Support provided by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 424 and by the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mrs. Cornelia Weitkamp for her outstanding experimental assistance.

Supporting Information Available: Experimental procedures, spectroscopic data, and ¹H and ¹³C NMR spectra for **1a**, **1b**, **4a**, *anti*-**6a**, *ent*-**9e**, *anti*-**11b**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0364677

786 Org. Lett., Vol. 6, No. 5, 2004

^{(15) (}a) Beak, P.; Weisenburger, G. A.; Faibish, N. C.; Pippel, D. J. *J. Am. Chem. Soc.* **1999**, *121*, 9522. (b) Beak, P.; Whisler, M. C.; Vaillancourt, L. *Org. Lett.* **2000**, *2*, 2655.

⁽¹⁶⁾ Hoppe, D.; Behrens, K.; Fröhlich, R.; Meyer, O. Eur. J. Org. Chem. 1998, 2397, 7.

⁽¹⁷⁾ O'Brien, P.; Dearden, M. J.; Firkin, C. R.; Nermet, J.-P. R.; *J. Am. Chem. Soc.* **2002**, *124*, 11870.